

Publication #30353Revision:3.04Issue Date:September 2003

© 2003 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

Revision	n History	7
Chapter	· 1 Introduction	9
1.1	Purpose	9
1.2	Scope	9
1.3	Supplier Qualification Testing	9
Chapter	· 2 Socket 940 Qualification Tests	11
2.1	Qualification Test Report	11
2.2	Testing	12
2.3	Reference Documents	13
Chapter	• 3 Documentation Requirements	15
Chapter	• 4 Mechanical and Environmental Test Procedures, Conditions, and Requirements	17
Chapter	- 5 Electrical Qualification Requirements	23
5.1	Fixture for Electrical Qualification Testing	23
5.2	Electrical Specifications	23
5.3	Inductance Measurements	26
5.3.1	1 Capacitance and Inductance Matrices	26
5.3.2	2 Mated Partial Self-Inductance	27
5.3.3	3 Mated Loop Inductance	27
5.3.4	4 Mated Partial Loop Inductance Matrix	27
5.4	Capacitance Measurements	29
5.4.1	1 Test Procedures	29
5.4.2	2 Test Condition	29
5.4.3	3 Requirements	29
5.5	Differential Impedance	29
5.5.1	1 Differential Impedance Measurement	30
5.6	Propagation Delay Measurements	31
5.6.1	1 Single-Ended Propagation Delay Skew	31

AMD Socket 940 Qualification Plan30353Rev. 3.04September 20035.6.2Differential Propagation Delay Skew325.7Single-Ended and Differential Crosstalk335.7.1Test Procedure335.7.2Test Condition335.7.3Requirements33

List of Figures

Figure 1. Socket 940 Qualification Test Matrix	12
Figure 2. Pin Configurations for the Maxwell Capacitance and Partial Inductance Matrix Measurement	26
Figure 3. Loop Measurements for Extracting [Lp] for a Mated Three-Pin Combination.	28
Figure 4. Current/Voltage Definitions and Equivalent Circuit of the Partial Loop Inductance Matrix	28
Figure 5. Pin Configurations for the Propagation Delay Skew Measurements of Single-Ended Signals.	31

List of Tables

Table 1. Mechanical Qualification Test Descriptions	. 17
Table 2. Summary of Required Electrical Measurements for Socket 940	. 23

30353 Rev. 3.04 September 2003

AMD Socket 940 Qualification Plan

Revision History

Date	Revision	Changes
September 2003	3.04	Third public release.
September 2003	3.03	Internal Revision.
June 2003	3.02	Second public release.
June 2003	3.01	Internal Revision.
June 2003	3.00	Initial Public Release

AMD Socket 940 Qualification Plan

30353 Rev. 3.04 September 2003

Chapter 1 Introduction

This document defines the qualification testing requirements for The AMD Socket 940. The AMD Socket 940 is a 940-position, 1.27mm pitch, surface mount technology (SMT), zero insertion force (ZIF) socket for use with Advanced Micro Devices (AMD) 940-pin ceramic micro-pin-grid-array (µPGA) package.

1.1 Purpose

This document describes the qualification testing procedures, conditions, and measurements necessary to satisfy dimensional, mechanical, electrical, and reliability requirements for the Socket 940 that are necessary to meet the performance requirements of AMD AthlonTM 64 FX processor or AMD OpteronTM processor products.

1.2 Scope

The qualification tests described in this document are used for qualifying the 940-position μ PGA ZIF socket designed to mate with the 940-pin μ PGA package for the AMD Athlon 64 FX processor or AMD Opteron processor. A supplier's socket product must pass all requirements listed in this document before it can be considered for approval.

1.3 Supplier Qualification Testing

To become an AMD Qualified Supplier for Socket 940, the potential socket supplier must demonstrate that their product meets the requirements listed in this document and the *AMD Socket 940 Design Specification*, order# 25766.

The supplier is responsible for qualification testing costs.

AMD Socket 940 Qualification Plan

30353 Rev. 3.04 September 2003

Chapter 2 Socket 940 QualificationTests

All qualification testing must be conducted in AMD-designated test facilities. Qualification testing must be performed on production lots of Socket 940.

2.1 Qualification Test Details

The socket qualification test matrix for Socket 940 is shown in Figure 1 on page 12, for the 10 test groups. Each test group shows the sequence that the different tests must be performed. Test procedures, conditions, and requirements for the 9 of the 10 test groups are listed in Chapter 4, Mechanical and Environmental Test Procedures, Conditions, and Requirements, on page 17. Test group 7, is covered in Chapter 5, Electrical Qualification Requirements, on page 23.

2.2 Qualification Test Report

A Qualification Test Report must be issued listing the results from all the test groups shown in Figure 1 on page 12. This report must contain the following information for each of the tests conducted:

- Title of the test
- Sample description
- Supplier lot numbers
- Test equipment used
- Test procedures
- Test date and name of tester
- Measurements and observations
- Results including raw data and/or sample calculations

[$\stackrel{LLCR}{\longleftarrow}$	Group 10	8 samples(M,S)
-	Resistance to Solder Heat Resistance to Solvents	Group 9	8 samples(M)
	Dimensional Inspection ↓ Lever Actuation/ De-actuation Force ↓ Socket Retention Force ↑ Solder Ball Shear Force ↑ Contact Normal Force Plating Thickness Contact Porosity	Group 8	4 samples + loose contacts
		Group 7	8 samples(E)
	LLCR	Group 6	4 samples(M,S) oard anism d
Sample Preparation	LLCR LLCR Durability Durability LLCR Mixed Mixed Mixed LLCR Mixed Flowing Gas All samples mated LLCR	Group 5	8 samples(M) t mechanical test b & Retention Mech electrical test boar
Sample I	Preconditioning Thermal Aging LLCR Temperature Life LLCR ting ting	Group 4	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Dielectric Withstanding Pr Voltage Insulation Resistance Resistance Thermal Shock Thermal Shock Totelectric Withstanding Voltage Insulation Resistance Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity Cyclic Humidity	Group3	4 samples M E :-
-		Group 2	8 samples(M,S)
	Preconditioning Thermal Aging LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR LLCR Mechanical Shock Hermal Shock LLCR LLCR LLCR Advision Methanical Shock LLCR LLCR LLCR Advision Methanical Shock Advision Random Vibration Analysis Analysis	Group 1	Minimum 8 samples(M,S) per heatsink/ hardware configuration

Figure 1. Socket 940 Qualification Test Matrix

12

AMD Socket 940 Qualification Plan

2.3 Testing

Please contact the local AMD field application engineer (FAE) for approved test laboratory locations. The local AMD FAE can be reached at 1-800-538-8450.

2.4 **Reference Documents**

AMD Socket 940 Design Specification, order# 25766 and EIA Standard, EIA 364, Electrical Connector/Socket Test Procedures Including Environmental Classifications, contain additional information for the qualification testing of the AMD Socket 940.

AMD Socket 940 Qualification Plan

30353 Rev. 3.04 September 2003

Chapter 3 Documentation Requirements

The supplier of the Socket 940 must submit a minimum amount of documentation to AMD including:

- Socket 940 drawings and recommended PCB layout guidelines
- Socket 940 specifications
- Supplier part number for the specific Socket 940
- Electrical performance modeling
- Qualification Test Report—passing all the tests in this qualification plan
- Meeting all requirements of AMD Socket 940 Design Specification
- First article inspection report

In addition to the documentation, socket suppliers must provide AMD with five socket samples from the qualification test lot.

The documentation package, as specified in Chapter 2 on page 11, must be submitted to AMD. If all testing parameters are met, AMD will add the Socket 940 supplier data to the AMD development partners listing.

AMD Socket 940 Qualification Plan

30353 Rev. 3.04 September 2003

Chapter 4 Mechanical and Environmental Test Procedures, Conditions, and Requirements

All test groups shown in Figure 1 on page 12 are covered in this chapter with the exception of test group 7. Test group 7, is covered in Chapter 5, Electrical Qualification Requirements, on page 23.

The test procedures, conditions, and requirements, for mechanical and environmental tests of the Socket 940 are described in Table 1.

Procedures	Conditions	Requirements
	Thermal Shock	
EIA 364-32C	Cold Extreme: -55° C, $+0^{\circ}$ C, -3° C Hot Extreme: $+110^{\circ}$ C, $+3^{\circ}$ C, -0° C	Visual Inspection—No physical damage to socket housing or contacts.
	Measure the dwell for 30 minutes at each temperature extreme,	LLCR—25 m Ω max per contact with Fe-Ni-Co alloy pin.
	10 cycles, \leq 15 seconds transition time.	
	Group 2 samples exposed to the environment while mated	
	Group 3 samples exposed to the environment while unmated	
	Cyclic Humidity	
EIA 364-31, Method III	Temperature: 25°C to 85°C Relative Humidity: 90% to 95 %	Visual Inspection—No physical damage to socket housing or contacts.
	1000 hours duration, 8 hours cycle time. Group 2 samples exposed to the	LLCR—25 m Ω max per contact with Fe-Ni-Co alloy pin; Measurements made at 250, 500,
	environment mated Group 3 samples exposed to the environment unmated	750, and 1000 hours.

Table 1. Mechanical Qualification Test Descriptions

Procedures	Conditions	Requirements	
Thermal Cycling			
EIA 364-32	Cold Extreme: -55°C, 20 minutes dwell Hot Extreme: 110°C, 15 minutes dwell 1000 cycles, average rate of temperature change between hot and cold extremes must not be greater than 10°C per minute.	Visual Inspection—No physical damage to socket housing or contacts. LLCR—25 mΩ max per contact with Fe-Ni-Co alloy pin; Measurements made every 250 cycles.	
	Temperature Life		
EIA 364-17, Method A	Temperature: 115°C ± 2°C 500 hours duration	Visual Inspection—No physical damage to socket housing or contacts LLCR—25 mΩ max per contact	
		with Fe-Ni-Co alloy pin Measurements made every 250 hours.	
	Preconditioning Thermal Aging		
EIA 364- 17	Temperature: $85^{\circ}C \pm 2^{\circ}C$ 24 hours duration	Visual Inspection—No physical damage to socket housing or contacts. LLCR—Initial - less than 25 mΩ	
		per contact with Fe-Ni-Co alloy pin.	
	Industrial Mixed Flowing Gas		
EIA 364- 65, Condition IIA	Chlorine—10 ppb Hydrogen Sulfide—10 ppb Nitrogen Dioxide—200 ppb Sulfur Dioxide—100 ppb Temperature: 30°C Relative Humidity—70 % Duration—First 5 days: one half of the samples are mated and one half of the samples are unmated. Next 5 days—all samples mated.	Visual Inspection—No physical damage to socket housing or contacts. LLCR—25 mΩ max per contact with Fe-Ni-Co alloy pin; Measurements made at 5 days and at 10 days.	

Table 1. Mechanical Qualification Test Descriptions (Continued)

Procedures	Conditions	Requirements		
Mechanical Shock				
EIA 364-27, Test Condition A	Tested with up to 900 grams heatsink (and fan), attached with assembly hardware to mated package and socket with the PCB retention mechanism.	Visual Inspection—No physical damage to socket housing or contacts. Continuity—No contact discontinuity greater than 10 ns		
	50 G peak amplitude, 11 ms duration, half-sine waveform.	duration. LLCR—25 m Ω max per contact		
	3 shocks per direction, 3 axis—18 shocks total.	with Fe-Ni-Co alloy pin.		
	20 continuity circuits per test sample must be monitored during mechanical shock testing.			
	Random Vibration			
EIA 364,-28, Test Condition VII	Tested with up to 900 grams heatsink (and fan), attached with assembly hardware to mated package and socket with the PCB retention mechanism. 3.1 G rms, 20 to 500 Hz.	Visual Inspection—No physical damage to socket housing or contacts. Continuity—No contact discontinuity greater than 10 ns duration.		
	45 minutes duration per axis, 3 axis total.	LLCR—25 m Ω max per contact with Fe-Ni-Co alloy pin.		
	20 continuity circuits per test sample must be monitored during Random Vibration testing.			
Durability				
EIA 364-9	Initial actuation/de-actuation cycles must be made by exercising five cycles per μ PGA package. The final five cycles must be mated to the actual μ PGA package test device. Group 2—50 cycles per socket.	Visual Inspection—No physical damage to socket housing or contacts. LLCR—25 mΩ max per contact with Fe-Ni-Co alloy pin.		
	Group 5—5 cycles per socket.			

Table 1. Mechanical Qualification Test Descriptions (Continued)

Conditions	Requirements		
Low Level Circuit Resistance (LLCR)			
 100 mA maximum current, 20 mV open circuit voltage. Each measurement must be made across a set of two daisy-chained contact/pin locations. 200 daisy-chained circuits (400 μPGA socket contacts) must be measured per mated test sample. 	Initial LLCR must be less than 25 m Ω per contact with Fe-Ni- Co alloy pins. After any reliability testing, final LLCR must be less than 25 m Ω per contact with Fe-Ni-Co alloy pin.		
Dielectric Withstanding Voltage (DW	V)		
 650 VAC for 60 seconds. 25 contacts, randomly selected, equally distributed throughout the unmated socket; measurements must be made with adjacent lateral, diagonal and vertical contacts. 	No flashover or breakdown.		
Insulation Resistance			
 100 VDC for 2 minutes. 25 contacts, randomly selected, equally distributed throughout the unmated socket; The measurement must be made with adjacent lateral, diagonal and vertical contacts. 	1000 MΩ minimum.		
Five adjacent rows by approximately 31 columns of contacts per socket must be tested at 1.5 A. The temperature must be measured at a minimum of five contact locations per socket, with at least one sensor located at the middle of the energized pin field to capture the maximum expected contact temperature. Temperature measurements must	The maximum contact temperature rise must be less than 30°C due to Joule heating, for contact mating with Fe-Ni- Co alloy pin.		
	Low Level Circuit Resistance (LLCR 100 mA maximum current, 20 mV open circuit voltage. Each measurement must be made across a set of two daisy-chained contact/pin locations. 200 daisy-chained circuits (400 µPGA socket contacts) must be measured per mated test sample. Dietectric Withstanding Voltage (DW) 650 VAC for 60 seconds. 25 contacts, randomly selected, equally distributed throughout the unmated socket; measurements must be made with adjacent lateral, diagonal and vertical contacts. Insulation Resistance 100 VDC for 2 minutes. 25 contacts, randomly selected, equally distributed throughout the unmated socket; The measurement must be made with adjacent lateral, diagonal and vertical contacts. Contact Current Rating Five adjacent rows by approximately 31 columns of contacts per socket must be measured at 1.5 A. The temperature must be measured at a minimum of five contact locations per socket, with at least		

Procedures	Conditions	Requirements
	Plating Thickness	
Plating Thickness EIA 364-48	Gold and nickel-plating thicknesses must be measured on contact mating areas; 25 loose contacts.	30 micro-inches Au minimum over 50 micro-inches Ni minimum.
	Contact Porosity (Gold Mating Area	s)
EIA 364-60	Test must be performed on 25 loose contacts.	Quantify gold porosity of contact mating areas.
	Resistance to Solder Heat	
EIA 364-56	Socket must be subjected to four convection solder reflow processes for mounting the socket to the PCB.	Visual Inspection—No physical damage to socket housing; no deterioration of markings on socket cover.
		Socket cover must meet flatness requirements before and after solder reflow processes.
	Resistance to Solvents	·
EIA 364-11A	Four solutions test.	Visual Inspection—No physical damage to socket housing; no deterioration of markings on socket cover.
	Contact Normal Force	
	Tests must be performed on 5 individual contacts over the deflection range expected for engaging the package pin to the contact.	Force/Deflection curve must be generated for five cycles on each contact sample. Record initial and final contact gap.
	Additionally, contact gap must be measured before and after force/deflection tests.	Pat.
	Socket Retention Force	
	Socket retention force must be measured by extracting the µPGA package from the actuated socket with the cam lever in the lock position.	Minimum required socket retention force is 0.013 kgf per contact/pin or 12.5 kgf for mated 940 pins package.

Table 1. Mechanical Qualification Test Descriptions (Continued)

Procedures	Procedures Conditions				
Solder Ball Shear Force					
	The force required to shear off the solder ball on the contact assembled in the socket housing must be measured for 20 contact locations for each unmated, unmounted socket sample.	Minimum required shear force is 0.75 kgf per solder ball.			
Le	ver Actuation and De-Actuation For	·ce			
	The lever force must be measured for actuating and de-actuating the socket for 5 mating cycles per sample.	Maximum allowable lever force is 3.6 kgf.			
	Dimensional Inspection				
	Physical dimensions must be measured for conformance to AMD requirements and supplier drawings.	All dimensions must be within tolerance specified by AMD requirements and supplier drawings.			
	Metallurgical Analysis				
	Two samples from each test group (samples with the highest increase in LLCR) must be subjected to metallurgical analysis to determine the wear out of the mating surfaces on the contact and the package pin.	There must be no evidence of gold plating wear out.			
	Five sets of LLCR circuits per sample (10 contact and pin positions) exhibiting the highest LLCR increase, must be examined for wear out of the gold plating into the nickel underplating,				

Chapter 5 Electrical Qualification Requirements

This chapter describes the electrical qualification requirements for the Socket 940.

5.1 Fixture for Electrical Qualification Testing

Test fixtures required to conduct the electrical qualification requirements are furnished by AMD directly to the AMD-designated test laboratory.

5.2 Electrical Specifications

Table 2 contains the summary of the electrical parameter specifications for the AMD μ PGA socket. The specifications *do not include* the effects of the fixtures. Use proper calibration to deembed the parasitic contributions for the fixture of the specified electrical parameters.

Measured Quantity	Definition	Specified Value(s)	Measurement	Applicable Standard
Mated partial self- inductance of a single pin. <i>Note: This is the</i>	Partial self inductance of a single-mated (interposer-socket	4nH maximum assuming the current return at infinity.	This quantity cannot be measured directly nor be calculated uniquely from the measurements.	See Section 5.3.2 on page 27 for the discussion on the mated partial self-inductance.
only quantity in the specification	combination) pin calculated by using a 3D EM			Use a validated "industry- standard" 3D EM field solver.
that does not need measuring. Values obtained from an accurate detailed 3D EM field solver model are acceptable.	field solver.			This computed quantity must not be used in any calculations involving measured data.
Mated loop inductance of two nearest pins (i.e., pins separated by shortest distance).	The inductance of a loop formed by two nearest mated pins. All current is injected in one pin and returned through the other.	3nH ± 10%	The inductance of a loop formed by two nearest pins, which are shorted at the bottom of the socket, with current injected into one pin and returned through the other.	See Section 5.3.2 on page 27 for specified pin configurations.

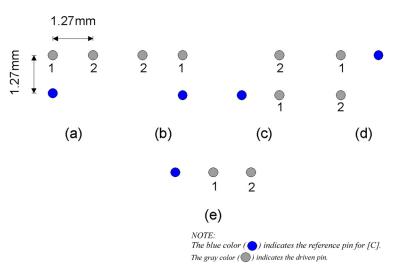
 Table 2. Summary of Required Electrical Measurements for Socket 940

Measured Quantity	Definition	Specified Value(s)	Measurement	Applicable Standard
Mated partial loop inductance matrix $\left[L_{loop}^{partial}\right]$ of three neighboring pins.	Partial inductance matrix of a mated three-pin combination extracted from mated two-pin loop inductance measurements. One of the pins is used as the reference (current return).	$L_{loop} \le 3 \text{nH} \pm 10\%$ These are the diagonal entries in the partial loop inductance matrix. $M_{12} < 2 \text{nH} \pm 10\%$. These are the off-diagonal entries in the partial loop inductance matrix.	The partial inductance matrix is extracted from a series of two-pin loop inductance measurements (as described above) for specified three-pin configurations.	See Section 5.3.2 on page 27 for the definition of this matrix and the measurements that should be used to back- calculate the self and mutual partial loop inductances. Use the formulas provided in Section 5.3.4.1 on page 28, Equation (1).
Mated capacitance between two nearest pins (i.e., pins separated by shortest distance).	The capacitance between two nearest mated pins.	1.0 pF max	Capacitance between two nearest pins measured from the top or bottom side of the socket. Do not short pins together for this measurement.	Use the EIA-364-30 standard for low frequency (10MHz) measurements. Or, use the network analyzer for S- parameter measurements with minimum frequency of 500MHz or lower. See Section 5.4 on page 29 for test procedures.
Mated capacitance matrix of three neighboring pins. The matrix is defined as the Maxwell (not circuit) capacitance matrix.	The capacitance matrix of three neighboring pins that are in the same pattern as those used to extract the mated partial inductance matrix.	All entries in the matrix should not exceed 1pF.	The Maxwell capacitance matrix measured for the specified mated three- pin configurations. Do not short pins together for this measurement.	Use the EIA-364-30 standard for low frequency (10MHz) measurements. Or, use the network analyzer for S- parameter measurements with minimum frequency of 500MHz or lower. See Section 5.4 on page 29 for test procedures.
Differential impedance between two nearest pins (i.e., pins separated by shortest distance).	The transmission line impedance of the odd mode for three mated pins, using one pin as the voltage/current reference.	$100 \ \Omega \pm 10\%$, with an additional $\pm 2\Omega$ measurement error.	The differential (or an odd mode) impedance measured for a three-pin configuration (S1, S2, G). If equipment permits, measure this quantity directly. If not, calculate from the measured, mated partial loop inductance and Maxwell capacitance matrices according to equations provided in this document.	Use the EIA-364-108 standard or see the equations in terms of partial inductance and Maxwell capacitance matrices in Section 5.4 on page 29. If the time domain method is used in measurement, then the signal should have rise time of 35ps to 150ps for signal amplitude to go from 10% to 90%.

Table 2. Summary of Required Electrical Measurements for Socket 940 (Continued)

Measured Quantity	Definition	Specified Value(s)	Measurement	Applicable Standard
Propagation delay skew among single- ended signals.	Deviation in the propagation delay skew of a single- ended signal through different mated (single) pins in the socket.	10 ps max., plus 3 ps max. measurement error.	Time delay of single- ended signal between the top pads of the interposer and the pads on the bottom side fixture. Locate the ground return for the specified signal pin pattern of single- ended signals as specified.	Use EIA-364-103 standard or Test Procedure in Section 5.6 on page 31. See Figure 2 on page 26 for specified signal pin patterns, which also include the location of the current return pin.
Propagation delay skew among differential signal pairs.	Deviation in the propagation delay of differential signals through mated pin pairs in the socket.	10 ps max plus 3 ps max measurement error.	Time delay of a differential signal between the top pads of the interposer and the pads on the bottom side of the fixture. The specified three-pin (S1, S2, G) arrangement should be used.	Use EIA-364-103 standard or test procedure in Section 5.6 on page 31. See Figure 2 on page 26 for specified differential pin-pair patterns, which also include the location of the current return pin.
Frequencies for the inductance measurements.	The frequencies at which inductance is to be measured.	500 MHz and 2 GHz	Any frequency domain test equipment recommended in EIA standards may be used to perform the measurements. If time domain equipment is used, it should have sufficient sampling rates to resolve the specified frequencies.	
Frequencies for the capacitance measurements.	The frequencies at which capacitance is to be measured.	500 MHz and 2 GHz	Any frequency domain test equipment recommended in EIA standards may be used to perform the measurements. If time domain equipment is used, it should have sufficient sampling rates to resolve the specified frequencies.	

Table 2. Summary of Required Electrical Measurements for Socket 940 (Continued)


Measured Quantity	Definition	Specified Value(s)	Measurement	Applicable Standard
Crosstalk between nearest single-ended and differential signals. This quantity should be reported and should serve as an accuracy check for the partial loop inductance $\begin{bmatrix} L_{loop}^{partial} \end{bmatrix}$ and the Maxwell capacitance matrices.	Crosstalk is defined as the voltage (and current) induced on quiet (non- driven) transmission lines (single-ended or differential) due to the nearest driven (single- ended or differentially driven) neighbors.	Crosstalk should be measured and compared to the results predicted from the measured $\left[L_{loop}^{partial}\right]$ and Maxwell capacitance matrices.	Measurements are to be performed for specified pin patterns that will include, at least, the nearest and next to nearest neighbors.	Use EIA-364-90 standard— Method A or Method B for pin patterns specified in Figure 2 on page 26. See Section 5.7 on page 33 for the definitions of crosstalk in terms of the elements of the measured $\left[L_{loop}^{partial}\right]$ and capacitance matrices.

5.3 Inductance Measurements

This section describes the capacitance and inductance matrices, the mated partial self inductance, mated loop inductance, and the mated partial loop inductance matrix.

5.3.1 Capacitance and Inductance Matrices

Measure the partial loop inductance and Maxwell capacitance matrices for the three mated-pin configurations shown in Figure 2.

Figure 2. Pin Configurations for the Maxwell Capacitance and Partial Inductance Matrix Measurement

For the pin configurations shown in Figure 2, the size of the Maxwell capacitance matrix is $2x^2$, which is also the size of the partial loop inductance matrix.

5.3.2 Mated Partial Self-Inductance

The following sections are procedures required to properly test for mated partial self-inductance.

5.3.2.1 Test Procedure

Use a validated *industry-standard* 3-D EM field solver. This is the only quantity in the specification that need not be measured. Values obtained from an accurate detailed 3-D EM field solver model are acceptable. Do not use this computed quantity in any calculations involving measured data.

5.3.2.2 Test Condition

- Test Frequencies are 500 MHz and 2 GHz.
- Use a validated *industry standard* 3-D EM field solver.
- The computed data is not used in any calculations involving measured data.

5.3.2.3 Requirements

Mated partial self-inductance is 4 nH maximum, assuming the current return is at infinity.

5.3.3 Mated Loop Inductance

The following sections are procedures required to properly test for mated loop inductance.

5.3.3.1 Test Procedure

The loop inductance is formed by a pair of pins. All current is injected in one pin and returned through the other. On a vector network analyzer using one port measurement, read the values from the Smith chart at the specified frequencies.

5.3.3.2 Test Condition

- Test Frequencies are 500 MHz and 2 GHz
- See Figure 2 on page 26 f or pin placement.

5.3.3.3 Requirements

Mated Loop Inductance must be $3 \text{ nH} \pm 10\%$ —two nearest pins, current in one pin, return from the other pin. Record all pin pattern readings, but use only the nearest neighbors for qualification.

5.3.4 Mated Partial Loop Inductance Matrix

The following sections are procedures required to properly test for mated partial loop inductance from measured mated-loop inductance data.

AMD Socket 940 Qualification Plan

Figure 3 shows the loop measurement for extracting [Lp] for a mated three-pin combination.

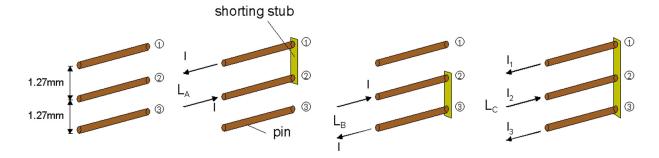
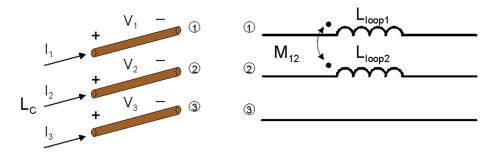



Figure 3. Loop Measurements for Extracting [Lp] for a Mated Three-Pin Combination

Figure 4 shows the current/voltage definitions and equivalent circuit of the partial loop inductance matrix.

Figure 4. Current/Voltage Definitions and Equivalent Circuit of the Partial Loop Inductance Matrix

5.3.4.1 Test Procedure

As shown in Figure 3, the partial inductance matrix of a mated three-pin combination that is extracted from a mated two-pin loop inductance measurement with one of the pins used as the reference (current return). Use the formula in Equation (1) to calculate the mated partial loop inductance from measured mated loop inductance data.

$$M_{12} = \frac{L_{loop1} + L_{loop2} - L_{loop3}}{2}$$
(1)

5.3.4.2 Test Condition

Test Frequencies are 500 MHz and 2 GHz.

5.3.4.3 Requirements

- $M < 2 \text{ nH} \pm 10\%$ —three pin loop with one pin used as reference.
- Measurement of the off diagonal entries in the loop partial inductance matrix.
- Diagonal entries of this matrix correspond to mated loop inductance and must meet specified values in Section 5.3.3.3 on page 27.

5.4 Capacitance Measurements

At low frequencies, the measurement of the capacitance should be carried out according to the EIA Standard 364-30. Two types of measurements are required; the single capacitance between the two nearest pins that are separated by 1.27mm and the Maxwell capacitance matrix for multiple pins.

5.4.1 Test Procedures

Use the procedures shown in EIA-364-30 and Section 5.3.2.

5.4.2 Test Condition

Test Frequencies are 500 MHz and 2 GHz.

Note: Do not short pins for this test.

The matrix is defined as the Maxwell (not circuit) capacitance matrix.

5.4.3 Requirements

- The mated capacitance of any two adjacent pins is 1 pF maximum, measured from the top or bottom of the socket.
- The mated capacitance matrix of three neighboring pins is 1 pF maximum.
- The Maxwell capacitance matrix is measured for a specified mated three-pin configuration.
- The capacitance matrix of three neighboring pins that are in the same pattern as those used to extract the mated partial inductance matrix.

5.5 Differential Impedance

If the dimensions of the socket pins and the spacing between them are small compared to the wavelength of the highest frequency component of interest, then the impedance of the three-pin configuration shown in Figure 2 on page 26 and Figure 4 on page 28, can be calculated approximately from the lumped loop inductance and Maxwell capacitance matrices. When pins 1

and 2 in Figure 4 on page 28 are driven differentially, with pin 3 acting as ground, then the differential impedance of the transmission line formed by this pin configuration is given by

$$Z_{diff} = \sqrt{\frac{L_{loop} - M_{12}}{C + C_{12}}} * 2.$$
⁽²⁾

The definition in Equation (2) for the differential impedance assumes that the driven (or signal) conductors have the same geometrical shape.

Note: Equation (2) is only valid for non-symmetric differential lines in homogeneous media.

The differential impedance should be measured for all combinations of the three-pin arrangements shown in Figure 2 on page 26. The pins are intentionally numbered in a specific manner so as to yield identical $[L_{loop}]$ and [C] matrices for pin configurations (a) through (d) in Figure 2 on page 26. This is not the case for the pin arrangement (e) in Figure 2 on page 26.

5.5.1 Differential Impedance Measurement

The following sections are procedures required to properly test for Differential Impedance.

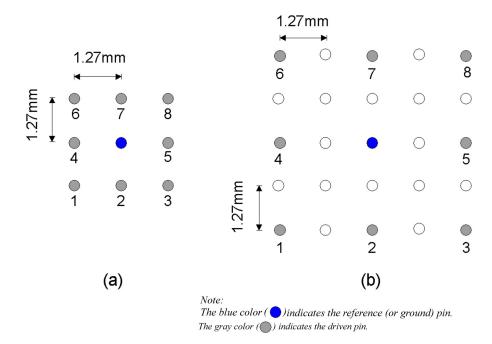
5.5.1.1 Test Procedure

- Use the procedures shown in EIA-364-108 or see the equations in terms of partial loop inductance and Maxwell capacitance matrices. If the time domain method is used in measurements, then the signal should have rise time of 35 to 150 ps for signal amplitude to go from 10 to 90%.
- Measure the differential transmission line impedance for three mated pins, using one pin as the voltage/current reference.
- Any frequency domain test equipment recommended in EIA-364-108 may be used to perform the measurements.
- If time domain equipment is used, it should have sufficient sampling rates to resolve the specified frequencies.

5.5.1.2 Test Condition

- Frequency or time domain method.
- Time domain method uses a rise time of 35 to 150 ps for signal amplitude to go from 10 to 90%.
- Frequency domain method measurements made at 500 MHz and 2 GHz.
- The differential impedance measured for a three-pin configuration (S1, S2, G).

5.5.1.3 Requirements


The acceptable range for the differential impedance is $100 \pm 10\%$ Ω with an additional $\pm 2 \Omega$ measurement error.

5.6 Propagation Delay Measurements

This section describes the propagation delay skew for single-ended signal pins and the differential propagation delay skew.

5.6.1 Single-Ended Propagation Delay Skew

The propagation delay skew for single-ended signal pins is to be measured for the pin configurations shown in Figure 5

Figure 5. Pin Configurations for the Propagation Delay Skew Measurements of Single-Ended Signals

Each measurement must consist of driving one (gray-shaded) pin as signal and using the center pin (blue) as return. The propagation delay for all signal pins in Figure 5(a) must be measured. The maximum allowable deviation for all the pins in the array must be less than the specified value. An identical set of measurements must also be repeated for the pin array shown in Figure 5(b).

5.6.1.1 Test Procedure

Use the procedures shown in EIA-364-103 for testing the single-ended propagation delay skew.

Propagation delay skew can also be measured using a time delay reflectometer (TDR) by launching the signals through the designated pins, such as those in Figure 5 on page 31. The signals are launched from the interposer and the delay skew is observed at the test board. The difference in the propagation times (delay skew) through different pins in the socket can be clearly seen and measured at the open circuited end of the test board.

5.6.1.2 Test Condition

For the time domain method:

Time delay of single-ended signals between the top pads of the interposer and the pads on the bottom side fixture.

The ground return for the specified signal pin pattern of single-ended signals is to be located as specified.

5.6.1.3 Requirements

- Deviation in the delay (skew) among the single-ended pins between the top of the package and the PCB under the socket must be 10 ps maximum plus 3 ps maximum measurement error.
- Three pins S1, S2, and G should be used for this measurement.

5.6.2 Differential Propagation Delay Skew

The differential propagation delay skew must be measured for every pin configuration shown in Figure 2 on page 26. In each measurement the two gray-shaded pins (denoted 1 and 2) must be driven as signals in differential form, using the blue pin as ground. The maximum allowable deviation in the propagation delay skew for all specified pin configurations must be less than the specified value.

5.6.2.1 Test Procedure

Use the procedures shown in EIA-364-103 and Section 5.6.1.

5.6.2.2 Test Condition

For the time domain method:

Time delay of a differential signal between the top pads of the interposer and the pads on the bottom side of the fixture.

5.6.2.3 Requirements

- Deviation in the delay (skew) of a differential signal between the top of the package and PCB under the socket must be 10 ps maximum plus 3 ps maximum measurement error.
- Three pins S1, S2, and G should be used for this measurement.

5.7 Single-Ended and Differential Crosstalk

The following procedures are required to properly test for crosstalk.

5.7.1 Test Procedure

Use the procedures shown in EIA 364-90, Method A or B, for the definitions of crosstalk in terms of the elements of the measured partial loop inductance $[L_{loop}^{partial}]$ and Maxwell capacitance matrices.

5.7.2 Test Condition

- Frequency or time domain method
- For time domain method—use rise time 35 to 150 ps for signal amplitude to go from 10 to 90%
- For frequency domain method—use 500 MHz and 2 GHz
- Measurements performed for specified pin patterns, differential shown in Figure 2 on page 26 and single ended shown in Figure 5 on page 31, must include the minimum, the nearest, and next to nearest neighboring pins.

5.7.3 Requirements

Crosstalk should be recorded and serve as an accuracy check for the partial loop inductance $\left[L_{loop}^{partial}\right]$ and the Maxwell capacitance matrices.